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ABSTRACT

eg _!.HS REPORT investigates the application of artificial neural networks to the problem of
power system stability. The field of artificial intelligence, expert systems and neural

netw_rks is _'eviewed. Power system operation is discussed with emphasis on stability consider-

ations. Real-time system control has only recently been considered as applicable to stability,

using conventional c:)ntrol methods. The report considers the use of artificial neural networks

to improve the stabilil3, of the power system. The networks are considered as adjuncts and as

rep!acements for existing controllers. The optimal kind of network to use as an adjunct to a

generator exciter is discussed.
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FOREWORD

HIS REPORT discusses the application of ',he relatively new technology of anificiai neural
networks to one of the oldest problems of electric power systems; stability. Power systems

are nonlinear in certain respects, and that means that instability of various kinds is possible. The

instability considered in this report is the kind demonstrated in the New York blackout of 1965.

While the problem is an old one. it is likely to be of increasing importance to find a

solution. A number of evolutionary pressures are acting now so as to change radically the nature

of the industry. These were reviewed at a meeting organized by the Department of Energy in

Denver, CO, in March 1990. Real-time control and operation was considered in detail at a DOE

Workshop, also in Denver, in November 1991. At the first meeting, the factors affecting the

evolution of the industry were thought to include

• the regulatory process

• imustry competitiveness

• new technologies

• load growth

• renewable sources and storage
a_ environmental concerns

Because of the first 3 of these factors, it was estimated that by 2020 over 50% of new

generation wo_fld be non-utility owned, and transmission line loading would be high. These are

the ingredients for trouble. The report of the first Denver meeting cnncluded that blackouts and

brownouts would occur if present control devices and operating practices continued to be used.

The work described in this report is aimed at developing new control devices and operat-

ing practices that may contribute to forestalling the difficulties seen for the future power system.

Given the lead-time required to put any new technology into practice, it is not too early to start

investigating such advanced concepts as controllers based on artificial neural networks. Our work

shows that neural nets could be a valuable addition to the options available for power system

operation.

Because we are mixing two disparate technologies, power systems and neural nets, some

background material on both topics is included in this report. The reader who feels the need to

brush up on either topic should find help in Part 1 or Part 2 of the report. The reader who is

comfortable in both areas may skip directly to Part 3.

HAROLD KIRKttAM

PASADENA. CALIFORNIA

NOVEMBER Iqg_
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PART 1. POWER SYSTEM STABILITY

OWER SYSTEM OPERATION is a complex topic. The way energy flows in an
interconnected network is not obvious, and difficult to analyze evea in the steady state. The

fact that the system is nonlinear can lead to instability. The objective of maintaining h_gh

reliability of service in spite of these features of the system have led, over the years, to some

conservative ways of operating.

It seems fair to ask why the electric power system presents a problem in dete,-mtning load

flow. After all, the components of the power system, the lines, transformers and generators are

all weli-understt_d devices. In part the difficulty stems from the fact that the load on the system

is not known. It can be said that _e load is not simply resistive, and is distributed geographical-

ly, but its power demand is not known, or indeed directly measurable. Another part of the

problem arises t'_-om the way the system parameters are specified. An example will illustrate the

point.

Consider the simple system shown in Figut'e 1-1. There are two generators, a single load,

and two resisturs represeming the losses in the transmission lines. Although most power systems

are ac, we can clemonstrate the analytical difficulties with adc system, as shown.

We begin by specifying that the left generator output is 100 W, and the load power is

150 W at 100 V. (This kind of specification of the generation is reasonabiy representative of

power system practice. The left generator might be a small efficient unit, running at full power. )



Part 1" Power System Stability

"rh¢ problem is to determine the bus voltages V_ and V, and the power to be delivered

by the right generator. When these three quantities arc known, the system operating conditions
will be known.

Figure 1-1.

Simple power system

V 1 I_ 1Q

"..

'\

V_- IOOV _ 13 15

t2LOAD _.

The load current is

150W

/_= zoo-'--V=1.5a
Two expressions can he written for 11:

100

and

v,-V_
1

from which 11 = VI- 100.

The voltage VI of the left generator is uniquely specified because

100

-v7=v,- 1oo
or

This may he solved directly

Of course,

By Kirchoff's Carrcnt Law,

and we can solve for 13:

(1-1)

(1-2)

(1-2,)

(I-4)

vl_- lOOV,- lO0=0 (1-5)

V s= 100.99V (1-6)

t,-- 1oo=0.99A (,-7)
vl

l==/1+13 (1-8)

13=I s-I t= 1.50-0.99=0.51A (I-9)

V3 can be found by considering the volt-dropdue to I_in the 1 fllineresistance.The

resultis V3 = 100.51 V. Now the power from the rightgenerator can be found:

P, = V,_ :51.26W (1-10)

JPL 93-*** page 2



Part 1: Power System Stability

The system is now completely analyzed. The right generator must burn enough fuel to

generate 51.26 W_-,,,tts, and the field current must be adjusted for a terminal voltage of 100.51 V.

The left generator _ust supply 100 W at 100.99 V.

Although the system is extremely simple, the above analysis illustrates some important

concepts. In the real world, the exact power of the load is not generally known. In scheduling

the generation, one generator i_ designated as the "slack" machine (the right hand generator :,n

the example), characterized by an initially unknown power gcneration. The power is men

adjusted so that the frequency is at ti_e rcquired value: by definition the demand is then being
met.

The purpose of a load flow calculations, such as the one above is to determine the voltages

and power flows throughout the system, based on the measured data. There are 5 dcgreeg of

freedom in the circuit of Figure 1-1. In other words, the specification of five independent

quantities serves to totally determine the behavior of the system. In our example, the five

quantities were the power 3f the left generator, the power of the load, the load voltage and the

two line resistances. These are not the traditionally Sl_,'ecified para,-;lcters. The load is

geographically distributed, and is voltage dependent. Load power is therefore not known, but
must be found in a load flow calculation.

The specification of different parameters has a profound effect on the calculation. Let us

¢,olve the system again with the following parameters specified: the power of the left generator,

the two line resistances, the power at the load and the voltage at the right ger_erator. This system

is shown in Figure 1-2.

Figure !-2.
Respecifie(_ system

/_.. 10OW LOAD \

We proceed in a straightforward fashion to determine the power to be supplied by the

right generator as well as the two remaining bus voltages I,'1 and Vs.

P

/3=  1-11)

P (i-12)
= 0o- 113=too -

--v2/:=150 (1-13)

150

Ioo- pI

(1-14_
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Part 1: Power System Stability

I l =I_+- 13 =
150

100- P]100

P

100 (1-15)

V_ = I/. _-111

100- P100

150 P
-_ (1-16)

100

P=_ft= 100 = V, I, (1-17)

Substituting for V_, I_ in this equation yields one equation involving P that we can use

to determine system operating point. The equation is a fourth order polynomial in P. Numerical
evaluation leads to

P=51.25W

The other values follow immediately:

13 =0.5125A

V2 =99.4875V, Iz = 1.5077A

Vt = 100.4827A, 1_=0.9952A

(1-18)

(1-19)

(1-20)

The analytic complexity of the solution is masked by the few lines above indicating that

the equation is a fourth order polynomial in P. Although this second problem appears to be a

minor variation of the first tmdeed the final values for the currem, voltage and power are not

significantly different), the mathematical complexity is such as to require numerical techn!ques.

'And this is for a system with only five degrees of freedom! A real power system will have

several thousand degrees of freedom, and will be specified in the way our second example was

specified. Numerical methods are clearly called for.

We have seen how difficult it is to fix the steady-state operating lmmt of a power system.

Now let us turn to the dynamics of the system.

Once more, we will illustrate the problem by means of an example. Consider another

simple power system, consisting of one machine and an infinite bus _, connected by two

transmtssion lines, as shown in Figure 1-3.

An infinite bus is a hypothetical convemence. It is a connection point defin,al so that whatever

power is inserted into it (or taken out of it), the frequency and the voltage remain coastant. 1"his has the

advantage for our purposes that it makes the equations of motion of the system much simpler. (In

practice, as tar as any single generator in a power system is concerned, the remainder of the syste:n looks

very much like art infinite bus. Choosing to use an infinite bus in the following example is not much of
an approximation.)

JPL 93-*** page 4



Part !: Power System Stability

Figure 1-3.
..Machine and inftnite bus

GENERATOA
re'_

/

v_ INF3NITE

BUS

"-= _

Note that this diagram uses a different representation for the power system. This

representation is a single line diagram, _ften used when the concern is more with the flow of

power than the details of the circuit, _s we are here. The tlu'ee-phase lines and buses are shown

simply as lines, and the machines as circles. The square boxes represent circuit breakers.

The voltage at the terminals of the generator is V_, and at the infinite bus is V=. If the

impedance of tl_ two transm,ssion lines is X, the power flow into the infinite bus can be written

e_- sin6 (1-21)
X

where 6 is the angle between the voltage phasors VI and V=. The angle 5 is called the power

angle, because it is this parameter that primarily determines the power transfer, as will be seen
below.

There are a number of simplifications ir, the preceding development. For instance, it is

assumed that the value of the _pedances (lumped together as the transfer _pedance X be,'wcen

the generator and the infinite bus. In practice, this is not the c,a_. The impedance includes a

component that is due to the generator itself, chiefly the inductance of the generator windings.

This impedance is not constant as the power output of the _=ner-,itor varies, because the position

of the generator rotor with respect to the rotating field ot the stator varies. Since part 9f the

rotor has been machined to accommoda_ the wL'idings, the inductance is not constant as a

function of position.

Another assumption is that the generator voltage is constant, or rather that the voltage

behind the impedance of the generator is constant. This is only true if there is no automatic

voltage regulator (AVR) on the machine. In p_ctiee, AVRs are fitted to all machines, and using

a model such as that shown in the Figure, t,_e best simple approximation would be that Vt is
constant.

Nevertheless, the equatiotl for the power transfer illustrates some important points. First,

tile power transfer does not depend on the voltage. V= is constant by definition. V 1 is practically

constant. Tile power transfer is primarily a function of the angle 6 between tile voltages at the

two ends of the system.

Second, the power transfer is inversely proportional to the transfer impedance. If the

impedance X is due to two identical lines of impedance 2X, the loss of one line would instantly

halve the power transfer. More about this in a moment.

Third, the power transfer has a maximum value given by (VI V=)/X. If the voltage

magnitudes are nominal, or 1 per unit, the maximum power transfer is simply 1/X, and occurs

when/i equals 90".

It is this sinusoidal dependence on _5and the existence of a maximum value for the power

transfer that makes the system capable of becoming unstable. Suppose that the machine is

operated so that 6 = 45 ° when one of the transmission lines is tripped out. If the two lines are

JPL 93-* * * page 5



Part 1: Power System Stability

identical, there will be a problem. Before file line is tripped we have

v, v_
P'_f_ : X sin45°

(1-22)
0.707

X

In other words, the power transti_r is approximately 70% of its maximum value tbr the

system. After the line is removed, the maximum possible power transfer is halved. The

generator finds that it is operating with too low a value of 6 to transfer the input power. The

excess power goes into accelerating the machi_, which se_es to increase 6.

In this particular case, when ,5 reaches 90 _ there is still an excess of input power over

power transferred, and the machine continues to accelerate. lhe post-fault value of maximum

power transfer is half the pro-fault value, and the input power is 70% of the pro-fault value, or

140% of the post-fault maximum. The machine continues accelerating indefikfitely, and will

eventually be tripped out. This kind of instability is called steady-state _nstability, because there

is no steady-state solution to the problerr

The usual answer to this kind of problem is to avoid it by operating wir.h a smaller power

angle. This is a very conservative approach and it means thPt equipment is being under-util-'tzed.

Of course, as the transmission system becomes more intercGanccted, *,he loss of a single ripe

would not mean a doubling of the transfer impedance, so i_ger values of power angle can 3afely

be used. However, there are still many insmrw.es where standard p=actice is to keep power angles

at less than 30 ° during normal operation. In such a case, the stability question is determined by

the dynamics of the system. The question of what is called tr_x_ient stability arises.

We said above that the machine would accelerate when it was being driven with more

power than was being transferred out elecaically. The equation of motion is

Md_ ÷ P,,=,sin_ = P._ (1-23)

where M is the inertia constant of the machine, and P._ is the maximum power that could be

transferred, VIV2/X. If 6 is constant, the first term var, i=,hes and the equation restates the

sinusoidai nature of the power transfer equation. When the value of _ is changing, the motion

is similar to that of a pendulum, governed by a second-order nonlinear equation. The equation

of motion is called the swing equation.

Note that there is no first order term in the swing equation. This means that the motion

is undamped. Once an oscillation is started, there i_ :lothin_ to prevent its continuing

indefinitely. This is because the resistance terms in the power system (line losses and the like)
are negligible in effect. In the derivation of the swing equation (which can be found in the text

books, for example Kimbark, *** or Stevenson, **'_*), the resistances arc explicitly ignored.

In practical terms, this is a good, perhaps conservative, approximation. In a large, interconnect-

ed system with many generators, there are so many othe, r factors that can affect the motion of

a generator (particularly exciter control systems) that the damping is usually very small.

Suppose that, for some unspecified reason, one line in the system of Figure 1-3 trips out.

In terms of the power-angle curves, the result is as shown in F',gure 1-4.

JPL 93-* * * page 6



Part 1: PowerSystem Stability

Figure 1-4.
Power-angle curve

!

0.8

0.6

0.4
o 0..2

¢,1

0

Before the fault, the system is operating wi-h power angle 61. After the line has tripped,

operation at the same power level (about 0.4 per umt) could resume at power angle 62, as shown

by the dotted line. However, the system trajectory is actually as shown by the heavy line in the

Figure. At first, the power angle does not change. The power de_-'reases (to less than 0.2 per

unit). The excess input power accelerates the machine, and the power angle increases towards

Although the heavy line in the Figure stops at 62, in practice the momentum of the system

will cause an overshoot beyond the new steady-state operating point. If the power angle increases

beyond 90 °, further increases in power angle will result in a decrease in power transferred, and

tim system will be unstable. This could happen because of the overshoot. The system shown

would exhibit transient instabil"ty. It is precisely this kind of instability that the work applying

artificial netwa; nets, described in the third part of this report, is designed to prevent.

ii_,,, are several simplifying assumptions behind this discussion. Most importamly, it

has been assumed that the excitation is constant. If, instead, the excitation is made a function

of the power angle, the power angle curve can be modified so that inc_ power can be

transferred, at the cost of increasing the voltage m the system. In the teal worM, a generator is

usually coma_ted to an intercorm_-,ed -,,-twork of other machines, and there is no single value

of 6. The excitation may be varied according to a locally available measuremem, such as the

derivative of the machine speed. This has the effect of adding a derivative term to the equation

of motion, and improving the stability by adding damping. (It may also have the unwanted effect

of resonating with system parang_rs, but that need not conc, em us here.) The device that is used

to modulate the excitation for this purpose is termed a power system stabilizer.

The use of an artificial neural network as an adjunct to or a replacemem for a power

system stabilizer to modulate the excitation is the subject of the third section of this report. In

the next section, we introduce the topic of artificial neural networks, as background for this

application.

JPL 93-*" * page 7
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PART 2: NEURAL NETWORKS

HE QUEST for efficient computational approaches to artificial intelligence (AI) has
undergone a significant evolution in the last few years. Attention has come to focus on

application of neural learning concepts to some of the many tasks performed by machines. 1._,is

must be complemented by some insighz into how to combine symbolic reasoning with massively

parallel processing abilities. Computer scientists seek to understand the computational potential

of tl-,is emerging technology. They are interested in knowing the fundamental limitations and

capabilities of handling unstructured problems by intelligent machines. Issues such as this are

central to the deeper question of the feasibility of neural learning visa vL_ artificial intelligence.

The focus of this part of the report is narrower; to examine generally the _pabilities of

neural mcwork learning. Machine learning in the context of neural networks is examined from

the standpoints of computatiov.al complexity and algoriu_nic information theory.

Not only is the concept of massively parallel neuroprocessing of scientific interest, it is

also of great practical interest. It is changing the nalm'e of information processing and problem

solving. In general, the scientific and engineering community is faced with two basic categories

of problems. First, there are problems that are clearly defined and deterministic and controllable.

These can be handled by computers emp;oying rigorous, precise logic, algorithms, or production

rules. This class deals with structured problems such as sorting, data processing, and automated

assembly in a controlled works'pace. Second, there are scenarios such as maintenance of nuclear

plants, undersea mining, battle management, and repair of space satellites that lead to computa-

JPL 93-**" page 9



Part 2: NeuralNetworks

tional problems that are inherently ill-posed. Such unstructured problems present situations that

may have received no prior treatment or thought. Decisions need to be made, based on

information that is incomplete, often ambiguous, and plagued with imperfect or inexact knowl-

edge. These cases involve the handling of large sets of competing constraints that can tolerate

"close enough" solutions. The outcome depends on very, many inputs and their statistical

variations, and there is not a clear logical method for arriving at the answer. The focus of

artificial intelligence and machine learning has been to understand and engineer systems that can

address such unstructured computational problems.

Engineered intelligent systems, that is expert systems with some embedded reasoning,

such as might be used for autonomous robots and rovers for space applications, behave with

rigidity when compared to their biological counterparts. Biological systems are able to recognize

objects ok stx'ech, to manipulate and adapt in an unstructured environment and to learn from

experience. Engineered systems lack common sense knowledge and reasoning, and knowledge

structures for recognizing complex patterns. They fail to recognize their own limitations and are

insensitive to context. They are likely to give incorrect responses to queries that are outside the

domains for which they are programmed. Algorithmic structuring fails to match biological

computational machinery in taking sensory information and acting on it, especially when the

sensors are bombarded by a range of different, and in some cases competing, stimuli. Biological

machinery is capable of providing satisfactory solutions to such ill-structured problems with

remarkable e_e and flexibility.

An important part of any development for unstructured computation today is to

t_rstand how unstructured computations are interpreted, organized, and carried out by

biological systems. The latter exhibit a spontaneous emergent ability that enables them to self-

organize and to adapt their structure and functi_'na, z

Technical success in emulating some of the fundamental aspects of human intelligence

has been limited. The limitation lies in the differences between the organization and structuring

of knowledge, the dynamics of biological neuronal circuitry and its emulation using symbolic

processing. For example, it has been said that analogy and reminding guide all our thought

patterns, and that being ammed to vague resemblances is the hallmark of inteUigence (Hofstader,

1979; Kanal and Tsao, 1986; Linkser, 1986a,b; Winograd, 1976). Thus, it would be naive to

expect that logical manipulation of symbolic descriptions is an adequate tool. Furthermore, there

is strong psychophysical evidence that while the beginner learns through rules, the expert

discards such rules, somehow instead discriminating thousands of patterns, acquired through

experiertce in his domain of expertise.

It is rapidly becoming evident that many of the unstructured problems, can be solved not

2 A comment about the use of the word emergent is in order. The first dictionary definition is usually

emerging, which doesn't help much. Suddenly appearing and arising unexpectedly are lower in the list

of meanings. Almost certainly, the use of emergent in our context derives from the emergent theory of

evolution which holds that completely new organisms or modes of behavior appear during the process

of evolution as a result of unpredictable rearrangements of pre-existing elements. This use carries with

it the r_tion that the results do not arise from a higher external control, but from the operation of a form
of natural selection. In nature, the process occurs as a result of feedback, strengthening some (biological)

neural connections and weakening othe_ during learning. In our application, the natural selection

corresponds to the adjustment of the weights during the training of the artificial neural network.

JPL 93-* * * page 10



Part 2: NeuralNetworks

with traditional AI techniques, but by "analogy", "subsymbolic" or pattern matching techniques.

Hence, neural network_t, a biologically inspired computational and information processing

approach, provides us with an ir,herently better tool. In the remainder of this report, we present

tutorial material that will function as a background for further work on the application of

artificial neural networks to power system problems The remainder of this section of the report

concentrates on neural networks. Their application to the control problems of power system

stability is examined in Part 3. A mathematical formalism that can provide an enabling basis for

solving complex problems is reserved for an Appendix.

The problem of interest here is one that has been addressed for the last several decades,

namely, functional synthesis. Specifically, we focus on learning nonlinear mappings to abstract

" .... :---' .... :-':--' _V.,,,a, invariants from representative examples, ttowever.IUII_LIUIi_III, _ldltl_tllk, drtll, logical and .... "^'

before we formally introduce neural networks in the technical core of this report, we present

arguments comparing the suitability of neural networks and formal AI to solving problems in

computational learning.

AI Modeling and Neural Networks

Over the last three decades, AI and neural network researchers have charted the ground in the

areas of pattern recognition, adaptive machine learning, perception and sensory-motor control.

This has provided an assessment of what is difficult and what is easy. Although both disciplines

have similar goals, there is not much overlap between their projected capabilities. The basis of

both .approaches may be traced back to hypotheses of Leibniz (1951) and Weiner (1986). They

identified humans as complicated goal-seeking machines, each composed of an "intelligent" brain

and highly redundant motor systems. This nmchine can detect errors, change course, and adapt

its behavior so that achievements of goals is more efficient.

Later development of intelligent systems has pursued two distinct schools of thought;

symbolic and neurobiology, or conmectionist. AI researchers concentrated on what the brain did

irrespective of how it was accomplished biologically, while the cotmectionists focussed on how

the brain worked. The following material is written by a connectionist.

Rooted in the "rationalist, reductionist tradition in philosophy," P,J assumes there is a

fundamental underlying formal representation and logic that mirrors all primitive objects, actions

and relations. This view of the world has the necessary and sufficient means for general

intelligent action. Newell and Simon (1976), are the most forceful proponents 3f this approach.

They hypothesized that otr, e such a representation were available, the operations of human

cybernetic machinery could be fully automated and described by mathematical theorems and

formal logic. They believed all knowledge could be formulated into rules. Hence, behavioral

aspects of human reasoning and perception could he emulated by following rules or manipulating

symbols, without regard to the varying interpretations of symbols_ Further, in this view, intel-

ligent behavior arises from the amalgamation of symbols in patterns that were not anticipated

when the rules were written. Expert systems are product of such a line of investigation.

However, as discussed by Reeke and Edeiman (in Graubard, 1989), over the years AI

researchers have struggled against fundamental systems engineering issues summarized as
follows :

JPL 93-**" page 11



Part 2: Neural Networks

(a)

(b)

(c)

(d)

(e)

(f)

Coding Problem: finding the suitable universal symbol system, ie the ultimate simple

units by which all complex things can be understood;

Category Problem: specifying a sufficient set of rules to define all possible categories
and phenomena that the system might have to recognize;

Procedure Problem: spex.ifying in advance all actions that must be taken for all possible

combinations of input;

Homunculus Problem: This pins the fundamental problem of AI to the old puzzle of

"infinite regress _ in a universal symbol system. For example, when a person looks at an

object, say a computer, how is the image of the computer registered in the brain ? All

explanations hitherto proposed by AI attribute this process to some "intelligent device"

inside the bran that is ih charge of doing the registering. However. the same problem

has to be facecl again to explain how the "device" does the registering, and so on ad

infinitum.

Developmental Problem: devising mechanisms that can enable programmed systems

exist: self-learn, self-organize their structure and function and self-replicate without
explicit external manipulation, akin to adaptive biological systems;

Nonmonotonic Reasoning Problem: designing rules that can function as retractable

hypotheses, to mitigate the problems that arise when rules get executed without context-

consistency checks.

Since formal AI has not been able to surmount the above problems using logical

reasoning alone, some have suggested recourse to an alternate scientific paradigm--neural
networks. In a radical philosophical departure from AI, the neural network community argues

that logical reasoning is not the foundation on which cognition is based. Instead, cognition is an

emergent behavior that results from observing a sufficient number of regularities in the world 3.

The theoretical underpinnings of this approach lie in biological detail and rigorous mathematical

disciplines such as the theory of dynamical systems and statistical physics. Neural network

theorists attempt to discover and validate the principles that make intelligence possible by

observing existing intelligent systems, ie the brain. They hold the view that cognitive machinery
is built from many simple, nonlinear, interacting elements. These neural networks store

knowledge in ttcir internal states and self-organize in response to their environments. Intelligent
behavior results from collective interactions of these _mits.

Historically, the symbolic community has treated the human brain as a hierarchical

system of comlxments which obey the laws of physics and chemistry. The system could be

described as the solutions to mathematical equations relating computable functions over the
inputs and outputs of neurons. It is assumed that given an initial state and a sufficient amount

of computing power, one could compute a person's next state. This approach ignored the

framework of interpretation, =context-sensitivity," within which humans process information,

make commitments and assume responsibility. The primary focus of AI became to design rule

3 One might assume from the origin of the word that the emergent behavior is spontaneous in origin,

and indeed this is the case. The inner workings of most networks defy exact comprehension. One should
not, however, be too uncomfortable with this. Artificial neural networks are trained, and while the details

of how that training actually functions cannot be precisely predicted, the overall result can be estimated
satisfactorily.

JPL 93-*** page 12



Part 2: Neural NetworKs

systems that processed symbols without regard to their meanings. Thus, it completely _gn,_red

the considerable amount of subsymbolic or subconscious processing that precedes our conscious

decision making, and later leads to the filtering of situations so that the appropriate rule may be

used. In sharp contrast, rather than creating logical problem-solving procedures, neural network

researchers use only an informai understanding of the desired behavior to construct compu-

tational architectures that can address the problem. This, it is hoped, will eliminate the

fundamental AI limitation, lack of context sensitivity.

Whereas formal AI focusses on symbols, symbolic manipulation, or formal logic proce-

dures, neural networks focus on association, units and patterns of activation. Neurocomputation

primarily entails recognizing statistically emergent patterns, and processing alternatives obtained

by relaxing various features that characterize a situation.

Therein lies the performance pot.ntial of neural networks. They are amenable to the

development and application of human-made systems that can emulate neuronal information

processing operations. Examples of applications include real-time high-performance pattern

recognition, knowledge-processing for inexact knowledge domains, and precise sensory-motor

control of robotic effectors. These are areas that computers and AI machines are not suited for.

Neural networks are ideally suited for tasks where a holistic overview is required, eg to abstract

relatively small amounts of significant information from large data streams, such as in speech

recognition or language identification. On the other hand digital computers and AI are ideal for

algorithmic, symbolic, logical and high precision numeric operations that neural networks are

not suited for. The two fields complement each other in that they approach the same problems

but from different perspectives.

So far, we have tried to describe the application and potential of neural networks. We

now present a brief summary of their evolutionary history.

Artificial Neural Networks

Tbe field of artificial neural networks has been revitalized by recent advances in the following
three areas:

our understanding of anatomical and functional architecture; the chemical composition,

electrical and organizational processes occurring in the brain and nervous system.

2 hardware technology and capability, leading to physical realizations of neural networks

new network architectures with collective computational properties such as time sequence

retention, error correction and noise elimination, recognition, and generalization.

Development of detailed models of neural networks began with the work of McCulloch

and Pitts (1943). Using logical elements they demonstrated that synchronous neural nets could

perform all quantifiable processes, eg arithmetic, classification, and application of logical rules.

Hebb (1949) demonstrated that repeated activation of one group of neurons by another through

a particular synapse leads it to activate synchronously groups of neurons to which it is weakly

connected, thereby organizing ,strongly connected assemblies. Neumann (in Grossberg 1987b),
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injected the notion of redundancy in neurocomputing. He constructed networks which activated

many neurons to do the job of one. Winograd and Cowan (1963), extended his work to introduce

the notion of distributed representation. In this representation, each neuron partially represented

t_t y bits. The field was put on a firm mathematical basis by Rosenblatt (1962). He conjectured
intelligent behavior based on a physical representation was likely to be hard to formalize.

According to his arguments, it was easier to make assumptions about a physical system and then

investigate the system analytically to determine its behavior, than to describe the behavior and

then design a physical system by techniques of logical synthesis. He engineered his ideas, in a

feedforward network of McCulloch and Pitts neurons (1943), named perceptrons. He attempted

to automate the procedure by which his network of neurom learned to discriminate patterns and

respond appropriately. A detailed study of perceptrons led Min.¢ky and Papen (1969) to strong

criticism of the field. Thereafter, neural network recede_ into a long slump. However, as

observed by L,_dd (i985), Minsky was mistaken in interpreting or suggesting that simple

perceptrons were at the heart of connectiomsm. Their analysis was not valid for systems that

were more complex, including multilayered perceptrons and net;rons with feedback.

The resurgence of the field is due to t=hemore recent theoretical contributions by Kohonen

( 1977-1987), Grossberg (1987a, 1987b), Amari ( 1972-1983), Carpenter ( 1987a, 1987b), Hopfield

(1982,1984), and Zak (1988-1990). Hopfield's illuminating contributions have extended the

applicability of mural network techniques to the solution of complex combinatorial op!imization

problems (Hopfield and Tank 1985).

As shown in Fig. 2-1, artificial mural systems may be characterized as distribute_J

computational system comprised of many processing units. Each processing element has connect-

ed to it several others in a directed graph of some configuration. They have been defined
(Kohonen, 1988) as

massively parallel, adaptive dynamical systems modeled on the general features of

biological networks, that can carry out useful information processing by their state

response to initial or continuous input. Such nepal systems interac,: with the objects of

the real world and its statistical characteristics in the same way as biological systems do.

Figure 2-1.
Model of a neural system

BASIC_

I.
I

For _e _ neurm

U iil ihl l_Imllill,_ =Ukd_/I_

Wili=lltes_f_q=I¢w_@Itlal8_e mnnecllm from itoj

Gi _,th=tttnlimrsfunc_n
I i_,th=.=ttsm_V_t

Ki is a dscr/¢onsltn

JPL 93-**" page 14



Part 2: Neural Networks

Grossberg (1988) has observed that neural networks must:

(a)

(b)

(c)

(d)

be nonlinear

be nonlocal, ie exhibit long-range interactions across a network of locations

be nonstationary, ie interachons are reverabative or iterative.

have nonconvex "energy-hke" function.

The potential advantages of neuronal processing arise as a result of its ability to perform

massively parallel, zsynchronous and distributed information processing. Neurons with simple

properties and interacting according to relatively simple rules czn collectively accomplish

complex functions.

Neural network moduiing is a discipline which att,_mpts to understand brain-like

computationai systems. It has been variously termed computational neuroscience, parallel

distributed processing, aad connectionism.

The bulk of neural network models can be classified into two categories; those that are

intended as computational models of biological nervous systems or neuro-biological models, and

those that are intended as biologically-inspired models of computational devices with

technological applications, called Artificial Neural Systems (ANS).

Although our primary emphasis is on ANS, we will highlight the influence of neurobiolo-

gy on the formulation of ANS models, and the resulting computational implicatiott;. To get a

sense of the required size and interconnectivity of neuronal circuitry for intelligent beaavior, we

begin by examining biological neural networks. Most existing neural network models are based

on idealizations of the biological neuron and the synaptic conduction mechanisms, shown in

Figure 2-2.

CYTON

AXON

Figure 2-2. --
Biological neuron

._ _ NUCLEUS _.

DENDRITES AXONTERMINALS "

As shown in Fig 2-2, each ncmron is characterized by a cell body or cyton and thin branching

extensions called dendrites, that are axons specialized for inter-neuron transmission. The dendrite

is a passive receiving and transmitting agent, whereas the axon is electrochemically charged, a

highly active brain cell entity. The dendrites receive inputs from other neurons (by way of

chemical neurotramminers), and the axon provides outputs to other r_eurons. The neuron itself

is imbedded in an aqueous solution of ions, and its selective pcrmeabili_ to these ions (the cell

membrane contains ion channels) establishes a potential gr_ient responsible for transmitting

information. The electrochemical input signals or the tmamtrammitter is funnelled to the neuron

from other neurons, to which it is connected through sites on the their surface, called synapses.

The input signals are combined in various ways, triggering the generation of an output

signal by a special region near the cell body. However, the neurobiologicai phenomenon that is

of particular interest is the changing chemistry of the synapse as information flows from one
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neuron to another. The synapse instantaneously decides when the information is not essential and

need not be resupplied. The weight of the individual charge is regarded as the determining

factor. On the transmitting or pre-synaptic side of the synapse, triggering of the synaptic pulse

releases a neurotrammitter that diffuses across a gap to :he receiving side of the synapse. On

the post-synaptic or receiving side, the neurotransmitter binds itself to receptor molecules,

thereby affecting the ionic channels and changing the electrochemical potential.

The magnitude of this change is determined by many factors local to the synapse, eg the

amount of neurotransmitter released, and the number of post-synaptic receptors Therefore,

neurocomputation, biological self-organization, adaptive learning and other mental

phenomena are largely manifested in changes in the effectiveness or "strength" of the

synapses, and their topology. Additional details on the biological neuron, membrane polar-

ization chemistry and synaptic modification may be found in Aleksandcr (1989).

The above insights in neurobiology have led to the mathematica! _'ormm_::ion of simulated

neurons, ie the basic building block of neural network models. A functional model for a typical

simulated neuron is shown in Figure 2-3.

Figure 2-3.
Functional model of simulated neuron

Four useful areas may he abstracted. The first is the synapse where signals are passed from one

neuron to another, and the amount of signal is regulated, ie gated or weighted by the strength

of the synaptic interconnection. In the activated neuron region, called the summer, _ynaptic

signals containing excitatory and inhibitory information are combined. This affects the tendency

of a cell to fire or not. The threshold detector actually determines if the neuron is going to fire

or not. The axonai paths conduct the output activation energy to other synapses to which the
neuron is comaected.

Useful properties such as generalization, classification, association, error correction, and

time sequence retention emerge as collective properties of systems comprised of aggregations

of many such simple units. When viewed individually, the dynamics of each neuron bears little

resemblance to task being performed.

As discussed in the preceding paragraph, of particular computational and modeling

interest are the mathematical notions of synapse and synaptic modification. Further attention is

pa._d to mechanisms by which such units can be connected together to compute, and the rules

whereby such interconnected systems could be made to learn.

Computatio_sal Neural Learning

The strength of neural networks for potential applications arises from their spontaneous

(emergent) ability to achieve functional synthesis. That is to say, they learn nonlinear mappings,

and abstrac_ the spatial, functional or temporal invariances of these mappings. Relationships

between mukiple inputs and outputs can be established, based on a presentation of many
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_presentative examples. Once the underlying invariances have been learned and encoded in the

t_,poiogy and strengths of the synaptic intetconnections, the neural network can generalize to

soive arbitrary problem instances. Applications which rt quire solving intractable computatiotml

problems or adaptive modeling are of special interest

Neural Learning has been defined as the process of adaptively evolving the internal

parameters, eg connection weights and network topology, in response to stimuli (representative

exampies) being presented at the input (and possibly at the output) buffer. Neural networks

m.rdeled as adaptive dynamical systems relay on relaxation methods rather than heuristic

approach for automatic learning.

Learnir ,, in neural networks may be supervised. In this case, the desired output response

tc the input stimuli patterns are obtained from a knowledgeable teacher. The network is

presented with training patterns, and detect the statistical regularities embedded within them. It

learns to exploit these regularities to draw conclusions when presented ,vith a portion or a

distorted version of the original pattern. The retrieval process involves presentation of one of

the stimuli patterns, that have been repeatedly shown to the network during the training phase,

to the network and comparison of the network response to the desired one. When a portion of

a training pattern is used as a retrieval cue, the learned process is called auto-associative. When

the presented input is different from an3," input presented during training then, !earmng is called
hetero-associative.

When no desired output is shown to the network the learning is unsupervised. This kind

of learning is relevant to grouping or clustering. For instance, let us assume that the network

is presented with 10 different pictures of two different individuals. After training, the network

will have three states, ie, individual A, B or not known. When the network is presented with

one of the ten pictures, or a sufficiently close to one of them, it should converge to A or B.

Presenting a totally new picture to the network, on the other hand, may result in convergence

to either of the three states. However, to train the network on labeling the states is a task for

supervised learning.

An intermediate kind of learning is reinforcement learning. Here, a teacher indicates

whether the response to an input is good or bad, how far and in what direction the output differs

from the desired output. The network is rewarded or penalized depending on the action it takes

in response to each presented stimulus. The network configures itself to maximize the reward

that it receives. To illustrate the point, let us take the analogy of a driver trying to park a car

with the assistance of an outside person. In this case, the assistant, playing the roll of the

teacher, will give only directions such as, left, more to the left, straight, etc. The teacher does

not have the means to give quantitative value such as 20 degrees to the right. Once the training

is done, the driver should be able to park the car without any assistant.

Along with the architecture, learning rules form the basis of categorizing different neural

network models. A detailed description of different types of learning rules can be found in

Lippmann (1987). Neural learning rules could take the following forms:

Correlational Learning, where parameter changes occur on the basis of local or global

information available to a single neuron. A good example is the Hebbian learning rule

(Hebb, 1949), in which the cotmection weights are adjusted according to a correlation
between the states of two interconnected neurons. If the two neurons were both active

during some successful behavior, the connection would be strengthened to express the
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positive correlation between them.

On the other hand, in Error-corrected Learning, the rules work by comparing the

response to a given input pattern with the desired response. Weights modifications are

calculated in the direction of decreasing error. Examples are the per ,:p'-on learning rule,

and back-propagation. In this category, two methods are availa,!e. _or updating the

weights: (a) add up the weight change due to all stimuli patterns and make an average,

or _,b) apply the, weight changes due to each stimulus as they are computed. In principle,

the two methods should converge into the .came end results. IIowever, simulation results

indicate that the first approach be faster.

Another learning rule, Reinforcement Learning does not require a measure of the desired

responses, either at the level or a single neuron or at the level of a network. Only a

measure of the adequacy of the emitted response suffices. This reinforcement measure

is used to guide the search process to maximize reward.

Another category is Stochastic Learning, where the network's neurons influencing each

other through stochastic relaxation, eg, BGltzrnaan Mach._n¢. In this method, learning take

place in two stages. First, the network is run with both the input and output neurons

clamped (ie, the value of the input and output neorons set to desired values). Co-

occurrencey probabilities are calculated after the network has reached a global minimum.

This procedure is repcatea with only the input neurons clamped. Synaptic weights are

then adjusted according to gradient-descent direction.

Two important parameters that characterize the computational power of neural learning

formalisms are the nature of the states of individual neurons, and the temporal nature of synaptic

updating. The state. :f individual neurons may be either discrete or continuous. It has beer

shown that a network with a finite number of states is computationally equivalem to a finite state
machine.

Further, the naaue of th'ne variable in neural computation may also be either discrete or

comi,nmous. In the discrete case, the dynamics can be modeled by difference approximations to

differe=aial equations. It has been shown that continuous time networks can resolve temporal

behavior wlfich is _nt _ networks operatiDg in discrete time. In all respects, the two

claszes are computatio_tly equivalent..
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Adaptive Neural Control System Architectures

In a fundamental sense, the control design problem is to find an appropriate functional mapping,

from measured and desired plant outputs, to a control action that will produce satisfactory.

behavior in the closed-loop system. In other words, the problem is to choose a function (a

control/aw) that achieves certain performance objectives when applied to the open-loop system.

In turn, the solution to this problem may naturally involve other mappings, e _, a mapping from

the current plant operating condition to the parameters of a controller or local plant model, or

a mapping from measured plant outputs to estimated plant state. Accordingly, a learning system

that could be used to synthesize such mz_)ings on-line would be an advantageous component

of an intelligent control system. To successfully employ learning systems in this manner, one

must have an effective means for their implementation and incorporation into the overall control

system architecture.

Neurocontrol is defined as the use of well-specified neural networks to emit actual control

signals. In the last few years, hundreds of papers have been published on neurocontrol, but

virtually all of them are still based on five basic design approaches:

(I) Supervised control,where neuralnetsare trainedon a database thatcontains the

"correct" controlsignalsto use in sample situations

(2) Dn'ectinversecontrol,where n..aralnetsdirectlylearnthemapping from desired

trajectoriesto the controlsignalswhich yieldthese trajectories

(3) Neural adaptivecontrol,where mural nets arc used insteadof linearmappings

in standard adaptivecontrol

(4) The backpropagation of perfornmm., which maximizes some measure of

performam, over time, but cannot efficientlyaccount for noise and cannot

provide rcal-tin_learningfor very largeproblems

(5) Adaptive criticmethods, which may he defined as methods that approximate

dynamic programming (ie.approximate optimal controlover time in noisy,non-

linear enviromncnts)

Based upon preliminary studies,iiisclear thatlncthods I, 2, 4 arc not well suitedto

solve the problem at hand. At thisstage,italsoseems thatboth methods 3 and 5 arc capable of

solvingthe problem. However, an in-depthstudy isneeded todemonstrate the superiorityof one

compared to the other.Since the neuraladaptivecontrolmethodology has the advantage of being

implemented in a straightforward manner, ie as an add-on to tic existing adaptive controller, its

implementation and performaxr.e will be investigated and analyzed first.

Having motivated by the basic features of neural learning systems for control, we will

briefly describe hybrid control system architectures that exhibit both adaptive and learning

behaviors. These hybrid structures incorporate adaptation and learning in a synergistic manner.

In such schemes, an adaptive system is coupled with a neural learmng system to provide real-

time adaptation to novel situations and time-varying dynamics. The adaptive control system

reacts to discrepancies between the desired and observed behaviors of the plant, to maintain the

requisite closed-loop system performance. These discrepancies may arise from tir_te-varying
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dynamics, disturhatw, es or mmaodeled dynamics. The p _enomena of time-varying dynamics and

disturbances are usually handled througl', feedback it, the adaptive system. In contrast, the effects

of sorae unmodeled dynamics can be predicted from previous experience. This is the task given

to the learning system. Initially, all unmodeied behavior is handled by the adaptive system;

eventually however, the learning system is able to anticipate previously experienced, yet initially

unmodcled behavior. Thus, the adaptive system can concentrate on novel situations (where little

or no learning has occurred) and time-varying behavior.

In the following, two general hybrid architectures are c_atlined. The discussion of these

architectures parallels the usual presentation of direct and indirect adaptive control strategies.

In each approach, the learmng system is used to ,alleviate th_ burden on the adaptive controller

of continually reacting to predictable state-space dependencies in the dynamical behavior of the

plant. Note that various technical issues must be addressed to guarantee the successful

implementation of these approaches. For example, to ensure I;ath the stability and robustness of

the closed-loop system (which includes both the adaptive and learning systems, as well as the

plant), one must address issues related to controllability and observability; the effects of noise,

disturbances, model-order errors, and other uncertainties; parameter convergence, sufficiency

of excitation, and nonstationarity; computational requirements, time-delays, and the effects of

finite precision arithmetic. Many (if not all) of these issues arise in the implementation of

traditimal adaptive control systems; as such, there are some existing sources one may refer to

in the hope of addressing these issues. Altlg_gh these topics are well beyond the scope of this

document, in some instances, the learning augmented appre_h appears to offer operational

advantages over the corresponding adaptive approach (with respect to such implementation

issues). For example, a typical adaptive system would =_lUim pers/stent excitation to ensure the

generation of accurate control or model paramemrs, under varying plant-operating conditions.

A learning system, however, would only require sufficient excitation, during some training

phase, to allow the stationary, state-space dependencies of the parameters to be captures.

D_reet hn_

In the .typical direct adaptive control approach, see Figure 2-5, each control action u is generated

based on the tne.,amm_ y. and desired y,, plant outpnts, internal _,are of the controller, and

estimates of the pertinent cotr_ol law r,mmeters k. rbe ¢'z'timates of t_¢ control law parameters

are adjust_l, at each _thne-step, based on the error • I'Jetw.een _he meas: ured plant outputs and the

outputs of a reference system Yr- Of course, care must be _ten to ensure that the plant is

actually capable of attaining the performance specified by the selected reference system. Direct

adaptive comxol _bes do not rely upon an explicit plant model, and thus avoid the need

to perform on-line system identification.
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Figure 2-5.
Direct adaptive control

?k

Ym

The cont,'oller in Figme 2-5 is structured so that normal adaptive ope,ation would result if the

learning system were not implemented. The refereDce represents tie desired behavior for the

augmented pla,at (controller plus plant), while the adaptive rar.clmnism is used to transform the

reference error directly into a correction, Ak for the current control system parameters. The

adaptation algorithm can be developed and implemented in several different ways (eg, via

gradient or Lyapunov-based techniques. Learning augmentation can be accomplished by using

the learning system to store the +,_luired control syster+_ paran___ers as a function of the operating

condition of the plant. Alternatively, learning can be used to store the appropriate control action

as a function of the actual and desired piant outputs. The schematic architecture in Figure 2-5
shows the first case.

When the learning system is used to store the control system parameters as a function of

the plant operating condition, the adaptive system would provide any required perturbation to

*,2=econtrol parameters k generated by the lcaaing syet=m. The signal from control block to the

learning system in Figure 1 is the perturbation in the control parameters/_k to be associated with

the previous operating condition. This association (incremental learning) process is used to

combine the estimate f;om the adaptive system with the control parameters that have already

been learned for that operating condition. At each sampling instant, the learning system

generates an estimate of the control system parameters k associated with that operating

condition, and then passes this estimate to the controller, where it is combined with the

perturbation parameter estimates maintained by the adaptive system and used to generate the

control action u. In the ideal limit where perfect learning has occurred, ant] there is an absence

of noise, disturbances, and time-varying dynamics, the correct parameter values would always

be suppli,'xl by the, learning system, so that both the perntrbations ,_k and corrections Ak

generated by the adaptive system would aecome zero. Under more realistic assumptions, there

would be some small degradation in perfommnce because of adaptation (eg,/Sk and Ak might
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not be zero because of noise).

In the case where the learning system is trained to store control action directly as a

function of the actual and desired operating conditions of the plant, the adaptive system would

provide any required perturbation to the control action generated by the !earning system. Note

that a dynamic mapping would have to be synthesized by the learrdng system if a dynamic

feedback law were desired (which was not necessary, in the first case). The advantage of this

approach over the previcus one is that a more general control la,v can be learned. he

disadvantage is tl'at additional memory is required and mat a more difficult learning problem
must be addressed.

Indirect Implementation

In the typical indirect adaptive control approach, see Figure 2-6, -'a,:h control action u is

generated based on the measured y.. a:gt y,j desired plant outputs, internal state of the controller,

and estimated paramete,'s p. of a local plant model. The parameters k for a local control law are

explicitly designed on-line, based on the observed plant behavior. If the behavior of the plant

changes (eg, because of nonlinearity), an estimator automatically updates its model of the plant

as quickly as possible, based on the information available form the (generally noisy) output

measurements. The indirect approach has the important advantage that powerful design methods

(including optimal control techniques) may potentially be used on-line. Note, however, that

computational requirements are usually greater for indirect approaches since both model

identification and control law design are performed on-line.

k J Y=

Figure 2-6.

Indirect adaptive control

If the learning system in Figure 2-6 were not implemented, then this structure would represent

the operation of a traditional indirect adaptive control system. The signal p= is the adaptive

estimate of the plant model parameters. This signal is used to calcula, e the control law

parameters k. Incorporation of the learning system would allow the plant model parameters to

be learned as a function of the plant operating condition. The model parameters generated by

the learning system allow previously experienced plant behavior to be anticipated, leading to

improved control law design. In this case, the output of the learr_ing system Pt to both the control
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design block and the estimator is an a priori estimate of the model parameters associated with

the current cperating condition. And a posterion parameter estimate pp,= from the estimator

(involving both filtering and posterior smoothing) is used to update the mapping stored by the

learning system. The system uses model parameter estimates from both the adaptive and learning

systems to execute the control law design and determine the appropriate control law parameters.

In situations where the design procedure is complex and time-consuming, the control law

parameters might also be stored (via a _parate mapping in the learning system) as a function

of the plant operating condition. Thus, control law design could be performed at a lower rate,

assuming that the, control parameter mapping maintained by the learning system was sufficiently

accurate to provide reasonable contr_ win lieu of design at a higher rate.

Summary

In both of the hybrid implementations described in this section, the learning system (prior to any

on-line interaction) would only contain knowledge derived from the design model. During initial

closed-loop operation, the adaptive syst,:m would be used to accommodate any inadequacies in

the a priori design knowledge. Subsequently, as experience with the actual plant was

accumulated, the learning system would be used to anticipate the appropriate control or model

parameters as a function of the current plant operating condition. The adaptive system would

remain active to hana novel situations and limitations of the learning system (eg, finite

accuracy). With perfect learning, but no noise, dis_rba_s, or time-varying behavior in the

plant, the contribution from the adaptive system would eventually become zero. In the presence

of noise and disturbances, the contribution from the adaptive system would become small, but

nonzero (depending on the hybrid scheme used, however, the effect of this contribution might

be negligible). In the general case involving all of these effects, the hybrid control system should

perform better than either subsystem individually. It can be seen that adaptation and learning are

complementary behaviors, and that they can be used simultaneously (for purposes of automatic

control) in a synergistic fashion.

Neural Hardware Implmmmtation

Even to date, a majority of the work in the field of artificial neural networks consists of

theory, modeling, and software simulations of the massively parallel architectures on

conventional digital computers. However, to realize the promise of a high speed, inherently

parallel neural network architectures must be implemented in parallel hardware, This way, many

neurons can actually communicate and orchestrate their activities simultaneously.

The basic components of electronic neural net hardware are conceptually and functionally

extremely simple. The neurons can be implemented as thresholding nonlinear amplifiers and the

synapses as variable resistive connections between them. An artificial neural network t eretore,

consists of many simple processing elements, representing neurons, which interact among

themselves through networks of weighted connections functioning as synapses. The computation

performed by the network is determined by the synaptic weights or connection strengths. The

state of the system is identifie0 by the pattern of activity of the neurons. Given an initial activity
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pattern, each neuron receives input signals from the neurons and adjusts its output accordingly

over time The system rapidly evolves into steady activity pattern which is then interpreted as

a memory recall or as a solution to a problem.
The field of neural networks, as might be expected, has developed its own computational

terms. Some understanding of them is necessary to appreciate neural network simulation and

implementation requirements. Some of the key concepts and terms are:

O A typical neural network contains many more interconnects than neurons, or processing

elements.

o Each interconnect requires one multiply/accumulate operation for summing.

O Digital computers are _,_-,,rmallyassessed in terms of storage or memory (where the unit

of measure is words) and speed (instructions-per-second or floating-point-operations-per-

second). The field of neural network defines storage as the value of the input weights and

measures it by the interconnects-per-secona within a layer or between layers. (This way

of conceiving neural network storage is important only in the case of network simulation;

in the cas _.of implementation in special-purpose hardware, storage would be handled by

resistive _letworks and would be defined differently.)

To understand this vernacular and its implications, we will use the terms interconnects

and interconnects-per-second to chart a set of coordinates. We will place interconnects on the

horizontal and interconnects-per-second on the vertical axis, respective!y. The environment

defined by this chart will be used to de_ribe the computational capabilities of neural network

systems and applications.

To fix the idea, let us introduce the computational capabilities of certain biological

systems, as can be seen in Figure 5.

Figure 2-5.
Computational capabilities
of some biological systems
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A human, with the staggering capacity of 10 _'_interconnects and 10 _6 interconnecLs per second,

can be viewed as a superpower compared to creatures such as the worm, the fly, and the bee.

In this context, neural network researchers would be very pleased to be able to replicate the

computational capabilities of a fly or a bee with a machine. However, that will be difficult with

the tools presently available. Today's neural network researchers have access to a variety of
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digital tools, that range from low-priced microprocessor-based workstations, through at,ached

processors and bus-oriented processors, to the more expensive massively-parallel machines, and

finally to supercomputers.

Generally. the micro/minicomputers provide a very modest interconnects-per-second

capability, through m some cases storage capacity is substantial, l'he speeds of these devices are

limiting; neural network models take a very long time to run on them. Attached processors

improve this situation somewhat, since they can boost intercormects-per-second into the millions

from the hundreds of thousands. Bus-oriented processors, in some cases, raise by an order of

magnitude the number of interconnects-per-seco=ml available, but storage is not equivalently

greater, The massively parallel systems feature no better speed, and there remain gaps _tween

their speed and storag_ capabilities. Supercomputers, meanwhile, do not offer significantly more

capabiliq," than systems which cost far less In addition, the programming necessary to run net ral

network models on these massively par',,ilel machines is very comglex. It is, in fact, a problem

which limits the extent to wt, ich these systems can be used to conduct neural network research.

Moreover, the architectural limitations of these systems prevent researchers from stacking up

several of them to significantly boost their storage or speed.

The presen: state of neural hardware, in the context of interconnects (storage) and

intercon_nects-per-second (speed), may satisfy small size simulations. However, it is not very,

user-friendly for research, statistical work, or development of large databases. Neve_3eless,

several technologies are posed to push hardware capabilities beyond their present speed and

storage limits:

o Gallium arsenide (GaAs) and special-purpose charge-coupled devices (CCDs) will push

up the ceiling on interconnects-per-second.

o Continued developments in random-access memory (RAM) technology as well as the

lesser-developed thr_-dimensional (3-D) chip technology are expected to expand current

storage capacities.

o Multiprocessing, meanwhile, will allow the boundaries of simulation to be moved upward

by an order of magnitude.

Certainly, if neural networks are to offer solutions to important problems, those solutions

must be implemented in a form that exploits the physical advantages offered by neural networks.

The advantages include high throughput that results from massive parallelism (realtime

operation), small size, and low power consumption. In the near term, smaller neural networks

may be digitally implemented using conventional integrated circuit techniques. However, in the

longer term, implementation of neural networks will have to rely on new technologies.

Currendy, the developments of neural hardware are focused on the following three major areas:

o Direct VLSI/VHSIC (very large scale integration/very high speed integrated circuits). A

mature technology limited to a low density of intercormects due to its two-dimensional

nature. All the weights in a neural network implemented in direct VLSI/'vq-ISIC would

have to be stored in memory, which would consume a lot of capacity..
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O Analog VLSI, which holds promise for a near-term solution. It is, also, two-dimensional

and offers a high density, of interconnects. This is accomplished, because the weights can

be implemented in resistors, thereby obviating the need for additional memory.

0 Optical technology, a less developed and longer-term than the silicon-based approaches

and limited in the types of neural networks that it can implement. This offers a ve_' high

density of interconnects due to its three-dimensional nature.

Table 1 summarizes the state of the art neural hardware currently available or under

further development. These new chips are neede_a not only to build neural network simulators.

but also because they may become very valuable individually in neural network-based

applications.

Table 1. Comparison of architectures and technologies

System Accuracy Speed Technology
(bits) /_s/conn

Analog
CMOS

ANNA (AT&T) 6 1 0.9/J CMOS
Duong et a� (JPL) 6 0.5 2_u CMOS
Kub et al (NRL) 6 0.5 3/J CMOS

CCDs

Chaing (MIT) 6 0.6 3_ CCD
Optoelectronic

Frye et el (AT&T) 6 0.5 Si:H

Digital
Uchimuri et al (UNM) 8 O. 1 0.8/_ CMOS
Newell et ai (NTTI 8 0.025 1.6/J CMOS
CID (Caitech} 6 0.6 2/J CMOS

The fabrication and investigation of neural network architectures with different levels of

complexity and various sizes is currently the subject of research. Our approach, here at JPL,

involves development of fully parallel, cascadable "building blocks". This effort has already

resulted in neural hardware such as fully prograramable synaptic interconnection arrays and

nonlinear analog (variable gain sigmoid) neuron arrays. The modular building _-,locks have served

very well as flexible and versatile research tools. These tools have been employed in study of

the emergent properties of neural networks. Tt_ey also provided a sound baseline and guidelines

for designs and implementations of application-specific, high performance "neuroprocessors".

Such neural hardware has successfully been used for solution of real-life problems, not only at

JPL but also at several other institutions engaged in neural network research and development.
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We have implemented both feedback and feedforward architectures using the cascadable

synaptic and neuron building blocks. The computing speed of such systems exceeds 109 analog

operations per second. This is an order of magnitude higher than speeds achievable by neural
net simulations on sequential machines, Using these networks, we have demonstrated

content-addressable, associative memory,, terrain traflicability determination, and solutions to the

color graph optimization and Hopfield-Tank traveling salesman problems. This work is currently

leading to the development of application-specific neuroprocessors.

We, at JPL, have successfully demonstrated not only the feasibility of hardware

implementations of neural networks, but also unique strengths of analog processing implemented

in parallel hardware. This, in spite of its inherenL unavoidable pt'ecision limits and noise
constraints

Conclusions

. Massively parallel information processing schemes, inspired by neural network models,

have become a subject of great interest in recent years. Mathematical modeling and

computer simulations have shown emergent computational properties of complex

networks of neuron-like non-linear processing elements. These networks capture _er*.ain

important aspects of intelligent information processing, not easily dealt with by existing

digital and artificial intelligence _'AI) technologies.

Neural network research has matured greatly, thanks to: (a)- development of advanced

mathematical thecries and new computer tools, and also (b)- a better understanding of

neurobiology.

. Artificial neural networks promise elficient solutions to a variety of problems such as

associative, fault-tolerant, information processing, pattern recognition, control, and

computation intensive global optimization operations. They also provide new capabilities,

such as "learning" from experiew, e in the field, self-organization, and generalization, to

solve ill-posed problems.

. Neural networks are an especially valuable t_hnology when t._ availability, of a good

solution in a very -hort time is more important than its absolute accuracy.

, A large portion of the work in the field, to date, is, however, primarily based on

software simulation of the network architectures on standard sequential computers.

Undoubtedly, a simulation of even a moderately large network, with a few hundred

neurons, becomes a computation-intensive and time-consuming task on a sequential

machine. To realize the potential speed in artificial, inherently parallel, neural network

architectures, the neurons must process information in parallel.

6_ Today's computer tools - with simulation capabilities of roughly 10 7 interconnects per

second- fall far short of the computational capabilities of even modest biolo?ical

networks:a fly, for instance, computes at 10 9 interconnects per second
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. Under the sponsorship of ARPA, JPL has focused on the development and demonstration

of feasibility, of fully parallel neural network architectures. These are used as high speed

research tools to study ',.he emergent propert, ies of neural networks

. Neural network technology readiness at JPL has already progressed from feasibility

demonstrations to development and rapid hardware prototyping. Stand-alone application--

specific algorithrr,_:- and coprocessor systems offering real-time ,_anctional capabilities.

previously nonexistent, are now available. These tools offer orders-of-magnitude speed

enhancement in computation intensive problems of interest.
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PART 3. APPLICATION

HE OPERATION of an electric power system has two objectives: firstly security, secondly
economic operation. First, it is necessary to ensure that there is enough generation and

transmission capacity to meet the I _ad. Then, if there is sufficient capacity, the most efficient

way to meet that load can be soughL. System operation can be viewed as controlling a multi-

variable system within the constraints of secure operation. In a multidimensional space

representation, the constraints are the botuxlaries of the space. The system operates at a point

within (or on the bo_ of) the space. More flexibility of operation would result from

expanding the boundaries. Such additional flexibility would allow the freedom to improve

efficiency. The object of the work in neural networks will facilitate energy efficiency pushing

against the boundaries of secure operation.

In a power network, power flows will distribute themselves in the system according to

Kirchoff's laws. The self-adjusting nature of the system means that the constraints that represent

safe practice may be violated if part of the system changes (for example, because of a fault).

This topic was reviewed in the first part of this report. The practical result is that the system

must be carefully monitored and controlled.

Human operators, trained and experienced, are adept at operating even complicated

power systems. This is the more impressive when one realizes the complexity and magnitude

of the problem. However, n,_ operator can control a system during a disturbance, or in the

seconds following one. The actions of the operator are limited to ensuring that constraints are
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not violated during normal operation, and to restoring as much of the system as possible, after

a fault--and the ensuing actions of the protection system--have changed the system config-

uration. Nor can an operator cope with th_ swings that s,_me systems experience because of

devices that are installed to make possible the transmission of greater a'aounts of power over

existing rights of way. The problem will be illustrated by meat,s of the example of power system
stabilizers.

The equations that govern the motion of a power system are second-order and non-linear.

The fact that the equations are second order is of no great import, but the nonlinearity reflects

the tact that the system can become unstable. Consider the system of Figure 3-1.

Figure 3-1.
Simple power system

For a simple power system, such as the one shown in Figure 3-1, consisting of only one gener-

ator and an infinite bus, the motion is described by the swing equation:

Md__ 26 + pm.,,sinS=Pout
dr 2

where M is the inertia constant, a term related to the angular momentum of the generator, _ is

the angle between the voltages V_ and V2 at the generator and the bus, X is the impedance of the

generator, or more generally ,the impedance across which power is transferred, and P,n is the

shaft input power.

Several simplifying asstunptions have been made, particularly with regard to the

constancy of the parameters. The angular momentum of the generator is a function of the speed.

Clearly this is not constant during a swing. The generator impedance is not constant, either,

since the rotor moves relative to the rotating magnetic field of the stator. It is also assumed that

there is no exciter action, that is, the voltage behind the generator impedance is assumed

constant. Nevertheless, in spite of these assumptions, the swing equation is instructive for the

purlx_ses of illustrating the behavior of the system.

This equation is basically a non-linear version of the equation that describes the motion

of a pendulum. The oscillations typically have a frequency in the order of a second or so.

determined by the inertia of the generator and the impedance of the generator and the line

between the generator and the bus. The oscillations are not highly damped _31ere is no first-order

term, because the resistances have been neglected), and can sometimes lead to instability.

The equation also shows that ",here is a maximum value to the amount of power that can

be transmitted from the generator to the load. This occurs when fi reaches 90 °. Any further

increase in the power will result in instability.

In practice, systems with long lines are more prone to instability problems, because of

the relatively large value of the transfer impedance. Some improvement can be made by adding

capacitors in series with the line. However, this can affect the ability of the system to maintain

e proper voltage profile, and can sometimes lead to subsynchronous oscillations (ie, oscillations

JPL93-''" page 31



Part 3: App!ication

at frequencies less than power frequency), that can be damaging to generators. The instability

problems are characterized by a frequency in the order ef 1 Hz, a frequency which is much too

fast fo_ the generator governor to control. (Governor actuation involves moving a large, slow

valve in the steam or water line driving the rt,rbine.)

To guard against this kind of stability, problem, it is possible to modulate the signal at

the generator exciter. This is done by means of a control system called a power system stabilizer

(PSS). In essence, a PSS fUnctions by adding a derivative term to _e equation of motion. It does

this by modulating the exciter in response to changes in _e power system. Power system

sta_,ilizers represent a relatively new technology, but one that may have its roots in some work

done by the U.S. Bureau of Reclamation in the late 1960s [ref].

Figure 3-2 shows some of the control systems associated with a generator, including a

power system stz,bilizer.

i

J

Generuto¢ controls -- - /, v

-"---,3

i

i

For the application of a PSS to be successful, it mt_st be "tuned" to the power system, that is,

the parameters of the control system must be adjusted so that *.he modulation has the desired

effect. Gains and frequency responses must be set to the appropriate values, Typically, a

stabilizer will take the derivative of a speed signal, a process which is inherently noisy. To

remove this noise, it will use a low-pass filter. Tuning thus becomes a problem of adjusting the

lead and lag components of the filter in _ stabilizer so that the appropriate correcting signal
is available, without noise.

However, the parameters of the power system are rot constar., being subject to daily,

weekly and ammal c),cles, as well as the changes due ',o the occurrenc, e and clearing of faults.

PSS set,tings are rarely correct, therefore, long after the original _tthags have been made.

They .,aJffer from another defect, too. When there is one nmchh_e and an infinite bus, it

is easy to see in which direction _ modulation must occur to improve the system stability. This

is not so obvious when the powe:r system becomes more complex. Consider the relatively simple

3-rnachine syste,.m of Figure 3-3.
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F_ure 3-3.

3-machine power system
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In the Figure, three generators supply load to two buses. (One of the generators has no local

load. ) Suppose that a PSS is installed on one of ,,.he generators, and that the system is disturbed

in some way. The PSS has been tuned for the situation shown, and will act so as to damp the

swing of the machine to which it is attached,. Note that the PSS tuning will not be correct if the

system configuration changes. It is fortunate that PSS tuning is relatively "low Q. _

NGw suppose that a PSS is added to anotber generator. Interaction between the two

con_ol systems is inevitable. Just as a swing in one part of the system will affect the other parts

of the system, so an action by a PSS in one part of the network will affect the other parts. This

has not been a significant problem in the past because of the low penetration of PSSs into the

power transmission system. However, power system stabilizers are increasingly likely to be seen

as inexpensive alternatives tc system reinforcements. Their impact on the power system will

increase. Before long, PSS ih.'eractions will be a problem.

Application of neural n_tworks

Artificial .'neural networks mimic the intelligent information processing abilities of the brain. This

is accomplished through a massively parallel architecture containing a number of logic elements

(t_he biological term is neurons, but the wonJ node is sometimes used), connected to each other

with variable strengths through a large network of interconnections (synapses).

Collectively, neurons with simple properties can accomplish complex functions such as

control, pattern classification, information reconsmu:tion, and learning. Their strength for many

applications arises from their ability to learn and abstract spatial and/or temporal invariances of

mappings. These networks can be built in hardware, or simulated in software.

A solution to the problems of power system stability control based on the u_;e of artificial

neural networks would have wide applicability; as well as being useful as adjuncts to powe:"
_t

system stabilizers, they could b_ used for control in systems containing dc links, for example,

•and systems containing FACTS devices. (FACTS stands for flexible ac transmission system. The

flexibility comes from the use of devices based on solid state switching to control the apparent

value of system parameters by changing the relationship between voltage and current.)

Implemented as an adjunct to a power system stabilizer, a neural net solution might be

as shown in Figure 3-4. Other forms of implementation are possible. In Figure 3-4 the neural

network is essentially an add-on to the stabilizer. In a fully developed system, there may be no

need for the stabilizer to exist separately from the neural network. All the functions of the

stabilizer could be implemented in the network.
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J

Rgure 3-4.
Power system stabilizer
with neural network
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An advantage of the implementation shown in Figure ** is that the stabilizer works without the

need to choose the i_.out parameter (speed, frequency or power) in advance. The neural network

can make thL_ choice in real time, probably as some kind of optimal blend of parameters. The

exact blend we_tld depend on the particular system disturbance, so that the system performance

should be t_=tter than a conventional stabilizer. Other advantages include the possibility of

training ',he system off-line in advam:e of installation, and the ability of the stabilizing function

to track system changes in the years that follow initial installation.

At present there arc relatively few systems with de links, and these tend to be large links

irtstalled primarily for the, transfer of large amounts of power over long distances. A major

example of this is the Pacific Intertie, an arrangement of two ac lines and one dc line that brings

power from the predominantly hydro resources of the Pacific North-West to southern California.

It is pointed out that the power flow on the de line is modulated so as to improve the stability

of the underlying ac system [refl.

If de links become more common--and this is thought to be a thrust of other research

being funded by DOE--interaction could be avoided simply by not modulating the power flow

in response to conditions in the ac system. However, this would be failing to ta_ advantage of

an opportunity to use the system more efficiently, and the cost could be very large. Modulation

should be considered from the outset. A complex system of multiple controllable de links would

be an ideal candidate for neural net operation.

FACTS devices were designed to be modulated. The paradigm is the variable capacitor,

designed to be used in series with a long transmission line. The FACTS device would enable the

apparent value of the line impedance to be modulated; essentially varying X in Figure **. It is

understood how the modulation signal for a FACTS device should be derived. It is not under-

stood wb_at to do when there are multiple devices.
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Tasx 1: Feasibility Study and Network Selection

The application of artificial neural networks to power system stability is motivated by the fact

that neural networks are self-programmable computational tools. A net may be comprised of

dozens or hundreds of simple processors that, like brain neurons, can receive and send signals

to many others The weights of the various com_ectiom (W, in Figure 10) can be changed by

training. The network changes its dynamic structure as "_ result of learning from i_s own

"experience," One fascir2ting--and suggestivew_pec ,, of neural nets is flint their inner

workings are not directly controlled, or even accessible. The network has "emergent" properties:

that is it can exhibit new behavior by creating new combinations of pre-existing elements,

Various groups of AI researchers have concentrated on particular implementations of

hemal networks, and particular ways of training the fete. A; the California Institute of

Technc_logy, an in_,rconmcted network that functions as a content-addressable memory was

developed by Professor J.J. Hopfield. Weights are downloadext. Other multi-layer networks can

be trained by "hack-propagation," which fiznctions much like negative feedback. A two-layer

network first described by Professor T. Ko.honen m 1982 is trained without supervision. The
essential difference between t_n¢ various networks is whether there ale constraints on the

permissible weights that, for example, prohibit or ¢lacourage lateral connection of neurom, or

prohibit the backward flow of information m the network. For the r.ime being, consider the

neural network shown in Figure 11 to be a perfectly gcmr",.l network, in which any neuron is

permitted a commotion to any other.

Neural nets have much to offer over convemional computers. They can be faster and

more robust, because of tl,_ parallel and distributed nature of the computation. They can also

ge,-mralize, and respond accur'2mly to situations that _ have not seen b_.fore. It is this aspect

of neural nets that makes them particularly attractive in many applicatiom.

The work begat_ in 1992, with a study of the feasibility, of using neural nets to solve the

problem of security assessmem m power systems. While this study is not complete at the time

of writing this Plan, the work has shown that the Kohonen net can inc'eed solve the security

assessment problem. At present, a study is under way to examine the feas._ _lity of using a neural

network to perform active stability control. It can be assumed that mmrai ne_ will be shown to

be a valid solution to the problem of the control of the large nonlinear power system. This being

tl'¢ case, the next step will be to build on this foundation by determining what kind of network

offers most promise. Wh_ttwer the specmc neural architecture finally selected for rids particular

application, the network can be made to learn to identify the behavior of the power system by

changing the _,naptic interconnections incrementally and recursively until all possible behaviors

ire learned. The trained neural networks will be tested and evaluated by presenting to it data

from the training library as well as new data.
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Task 2: Active Stability Control

By early 1994, the feasibility of using a neural net soluti ,n to address the problems of

controlling the stability of the power system should have been demonstrated theoretically. The

choice of which network type to use will likely also have been made. At this point, if it has net

already been secured, industrial cofunding for the work will be sought. Ira collaboration w_.th

DOE and an industry co-sponsor, it will be decided whether a neural controller should be

developed for FACTS devices, PSSs or for dc links.

Once the decision to address a particular subset of the problem is made, ;he proposed

solution can be tested by simulation. This will certainly be a software sL'nulation at first, and

will require development of simulation code for the network and analysis software for the power

system. At first, it will be appropriate to use a simplified model for the power system, consisting

of a few buses and containing some simplifying assumptions. Once the neural network model

has been shown to be capable of controlling such a system, a more complete model must be
used.

A power system analysis package (such as PSS/U, written by Power Technologies lnc)

would be an ideal candidate for a realistic test of the rmual network solution. To perform such

a test, the neural net simulation program and the power system transient stability program w:ll

have to be integrated, itself no trivial task.

A further step towards realizing neural net control of power system stability would be

to implement the neural network in hardware, probably by means of a DSP approach, and to

connect the hardware to a real power system. This work would require a careful, phased

implementation approach, and it is unlikely it could begin until 1995 at the earliest.
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Neural learning Formalism

We formalize a neural network as an adaptive dynamical system whose temporal evolution is

governed by the following set of coupled nonlinear differential equations:

( ))U,,.,.K u,,=g,, y ,,, T,,.,u.,,÷l t>O (2-2)

where u_ represents the output of the n 'h neuron, (u.(O) being the initial state). T,_ denotes the

strength of the synaptic coupling from the m'* to the n 'h neuron. The constants _ characterize the

decay of neuron activities. The sigrnoidal functions g_(.) modulate the neural responses, with

gain given by 3',, typically, g.(x) = tanh(3"_x}. To implement a nonlinear functional mapping

from an Nrdimensional input space to an No-dimensional output space, the neural network is

topographically partitioned into three mutually exclusive regions. As shown in Figure 2-4, the

partition refers to a set of iv.put neurom $1, a set of output neurons So, and a set of "hidden"

neurons Sn. Note that this architecture is not formulated m terms of "layers', and that each

neuron may be connected to all others including itself. To specify the term In we distinguish
between two different cases:

ln_l, Sj Oulputmr, So

Figure 2-4.
Topology of a
general network

I

Case 1: A temporal pattern is presented to the network. In which case, a(t) (henceforth the

bold font will denote a vector) is a N-dimensional vector of target temporal patterns, with

.non zero elements, a.(t), in the input and output sets only. When trajectories, rather than

mappings, are considered, components in the input set may also vanish. He.r.e. the time-

dependent external input term in Eq. (1), ie l,(t), encodes component-contribution of the

target temporal pattern via the expression

a.(O if nes tt.(t)= 0 if neSHU SO
(2-3)

To proceed formally with the deveiopmep.t of a temporal learning algorithm, we consider

an approach based upon the minimization of an error functional, E, defined over the time

interval [to, tf] by the following expression
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where the error component, e_(t), represents the difference between the desired and actual

value of the output neurons, ie

e (t)=ja.(t)-an(t) if nE S oIo if ne S_US n
(2-5)

Case 2: Static Imtterns are presented :o the network, in which case, the "scurce" term I0k,

encodes contribution of the Fh training sample via the following exprescion

{_ i$ neSjt*.= il .es.USo
(2-6)

As in the temporal case, the development of a static supervis..'xi learning algorithm.

requires minimization of an error function, E, given by the following expression

E2. Vn 6 $_Us o (2-7)

Where vector a denotes the steady state solution of the neural activation dynamics.
Eq.(2-1).

In both static and temporal models, the internal dynamical parameters of interest are the

strengths of the symptic interconnectiom, T_., the characteristic detay constams, x,, and the

gain parameters, %. They can be presented as a vector of M (M = N z + 2N) components

p (2 4;)

We will assume that elements of p are statistically independent. Furthermore, we will also

assume that, for a "3tmcific choice of parameters and set of initial conditions, a unique solution

of Eq. (2-1) exists. Herr.e, the state variables u are an implicit function of the parameters p. In

the rest of this document, we will denote the/_= element of the vector p by p,. (# = 1, .--, 3/)

and limit ourselves to the mmporal learning case due to its importance to our application.

Traditionally, learning algorithms are constructed by invoking Lyapunov stability

arguments, ie by requiring that the error functional be monotonically decreasing during learning
time, r. This translates into
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d_.ff_E_._ dE.dP, < 0

d_ _,=l dp, d,:

(2-9)

One can always choose, wi:h r_ > 0

dp_ dE

dz dp_

(2-10)

which implements learning in an inherently local minimization procedure. Attention should be

paid to the fact that Eqs. (2-1) and (2-9) may operate on different time scales, with parameter

adaptation occurring at a slower pace. Integrating the dynamical system, Eq.(2-9), over the

interval [r. r+Ar], one obtains

p.('; +Ax) = P.('O - tiff "_'_ dEd_: (2-11)
ap.

Equation (10) implies hat, in order to update a system parameter p,,, one must evaluate the

"sensitivity" (ie, the gradient) of E, Eq. (3), with respect to/¢' in the interval IT, r+Ar].

Furthermore, using Eq. (3) and obse_h'ag that the tune integral and derivative with respect to

p,, commute, one can write

de _ f,,dr L, = f,,aF a + f,,aF a, (2-12)

This sensitivity expression has two pans. The first term in the right hand side of Eq.(l 1) is

called the "direct effect", and corresponds to ti',e explicit dependence of the error functional on

the system parameters. The second term in the right hand side of Eq. (11) is called the "indirect

effecC, and corresponds to the implicit relationship bet_,een the error functional and the system

parameters via u. In our learning formalism, the error functional, as defined by Eq. (3), does

not depend explicitly on the system parameters; therefore, the "direct effect" vanishes, ie

OF
-0

Op. (2-13)

Since F is known analytically (namely, Eqs. (3) and (4)), computation of OF/Ou is s'raight-
forward. Indeed

OF

0u,- e, (2-13)

Thus, to ev_able evaluation of the error gradient using Eq. (11), the "indirect effect" matrix
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#uhgp should, in principle, be computed.

In summary, the problem of temporal learning is typtcally formulated as a minimization.

over an arbitrary but finite interval, of an appropriate error functional. The gradients of the

functional with respect to the various parameters of the neural architecture, eg synaptic weights,

neural gains, etc. are essential elements of the minimization process. In the past, major efforts

have been devoted to the efficacy of their computation.

Calculating the gradients of a system's output with respect to different parameters of the

system is, in geperal, of relevance to several disciplines. Hence. a variety of methods have been

proposed in the literature for computing such gradients. We will briefly mention only those
which are relevant to our work.

Williams and Zipser (1989) presented a scheme in which the gradients of an error

functional with respect to network parameters are calculated by direct differentiation of the

neural activation dynamics. This approach is computationally very expensive and scales poorly

to large systems, l'he inherent advantage of the scheme is the small storage capacity required,
which males as O(N_), where N denotes the size of the network.

Pearlmutter (1989), on the other hand, described a variational method which yields a set

of linear ordinary differential equations for backpropagating the error through the system. These

equa;ions, however, need to be solved backwards in time. It requires temporal storage of

variables f'rom the network activation dynamics, thereby reducing the attractiveness of the

algorithm.

Recently, Toomarian and Barhen (1992) suggested an approach for calculatingthe

gradientsof an error functionalwtth respectto the system's par'_-neters.I_buildsupon advances

innonlinearsensitivitytheory.In particular,itexploitsthe concept of adjointoperatorsto rc_h_ce

the computational costs.Two novel systems of equations for error propagation (ie,the adjaint

eq_iom), are at the heart of our computational framework. These equations are solved

simu_ouMy (ie,forward in time) with the network dynamics. The computational complexity

of the algorithm scalesas O(N 3)per time step.The storagerequi_mments are minimal ie,of the

order of O(N2).
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